Magnocellular and parvocellular visual pathways have different blood oxygen level-dependent signal time courses in human primary visual cortex.

نویسندگان

  • C-S J Liu
  • R N Bryan
  • A Miki
  • J H Woo
  • G T Liu
  • M A Elliott
چکیده

PURPOSE The magnocellular and parvocellular pathways (M and P pathways) are the major pathways of the visual system, with distinct histologic and physiologic properties that may also have different metabolic characteristics. We hypothesize that the differences of the 2 visual pathways would also manifest as differences in the signal time course of blood oxygen level-dependent functional MR imaging (BOLD fMRI). The differences in BOLD signal time course may provide insight into the metabolic requirements of the 2 pathways. METHODS Eleven fMRI sessions on 6 subjects were performed using stimuli that preferentially activated the 2 pathways. Regions commonly activated by both the M and P stimuli in the primary visual cortex (V1) were determined, and the contrast elicited by the stimulus, time-to-peak (TTP), and the full width at half maximum (FWHM) of the BOLD signal time course were measured. RESULTS The functional stimuli activated cortical regions described previously in the literature, such as V1, V4, and V5. Within V1, the TTP of the signal time course of the 2 stimuli were statistically different, with the P stimulus generating TTPs that were on average 12% faster than the M stimulus (P = .0037). CONCLUSION We have demonstrated the ability to functionally differentiate the M and P stimuli in a commonly activated anatomic region. Because the BOLD response is dependent on the ratio of oxyhemoglobin and deoxyhemoglobin in the blood, the difference in the BOLD time course between the 2 stimuli suggests that the oxygen demand of the 2 pathways may be different.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging

Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...

متن کامل

Magnocellular and parvocellular visual pathways are both affected in a macaque monkey model of glaucoma.

PURPOSE Neurochemical changes in nerve cells were investigated in the lateral geniculate nucleus (LGN) and primary visual cortex of macaque monkeys with experimentally induced glaucoma. METHODS Glaucomatous damage was induced in one eye of experimental animals by elevation of intraocular pressure following laser burns to the trabecular meshwork. Staining for the metabolic marker cytochrome ox...

متن کامل

Differential inhibition of chromatic and achromatic perception by transcranial magnetic stimulation of the human visual cortex.

The magnocellular visual pathway is devoted to low-contrast achromatic and motion perception whereas the parvocellular pathway deals with chromatic and high resolution spatial vision. To specifically separate perception mediated by these pathways we have used low-contrast Gaussian filtered black-white or coloured visual stimuli. By use of transcranial magnetic stimulation (TMS) over the visual ...

متن کامل

Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways.

A substantial body of evidence has suggested that signals transmitted through the magnocellular and parvocellular subdivisions of the LGN remain largely segregated in visual cortex. This hypothesis can be tested directly by selectively blocking transmission through either the magnocellular or parvocellular layers with small injections of lidocaine or GABA while recording cortical responses to a...

متن کامل

Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys.

Signals relayed through the magnocellular layers of the LGN travel on axons with faster conduction speeds than those relayed through the parvocellular layers. As a result, magnocellular signals might reach cerebral cortex appreciably before parvocellular signals. The relative speed of these two channels cannot be accurately predicted based solely on axon conduction speeds, however. Other factor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • AJNR. American journal of neuroradiology

دوره 27 8  شماره 

صفحات  -

تاریخ انتشار 2006